

SKIT	Teaching Process	Rev No.: 1.0
Doc Code: BS-SKIT.Ph5b1.F02		Date: 28-01-2020
Title:	Engineering Chemistry	Page: 1/ 19

Copyright ©2017. cAAS. All rights reserved.

Table of Contents

18CHE22 : ENGINEERING CHEMISTRY	1
A COURSE INFORMATION	1
1. Course Overview	
2. Course Content	2
3. Course Material	
4. Course Prerequisites	
B OBE PARAMETERS	4
1. Course Outcomes	
2. Course Applications	5
3. Articulation Matrix	5
4 Mapping Justification	
5. Curricular Gap and Content	
6. Content Beyond Syllabus	
COURSE ASSESSMENT	7
1. Course Coverage	
2. Continuous Internal Assessment (CIA)	
D1. TEACHING PLAN - 1	
Module - 1	
Module - 2	
D2. TEACHING PLAN - 2	
Module - 3	
Module - 4	
D3. TEACHING PLAN - 3	
Module - 5	
E1. CIA EXAM – 1	
a. Model Question Paper - 1	
b. Assignment -1	
E2. CIA EXAM – 2	
a. Model Question Paper - 2	
b. Assignment - 2	
E3. CIA EXAM – 3	
a. Model Question Paper - 3	
b. Assignment - 3	
F. EXAM PREPARATION	
1. University Model Question Paper	
2. SEE Important Questions	18

Note : Remove "Table of Content" before including in CP Book Each Course Plan shall be printed and made into a book with cover page Blooms Level in all sections match with A.2, only if you plan to teach / learn at higher levels

18CHE22 : ENGINEERING CHEMISTRY

A. COURSE INFORMATION

1. Course Overview

Degree:	BE	Program:	
Year / Semester :	2019/2	Academic Year:	2019-20
Course Title:	Engg chemistry	Course Code:	18CHE22
Credit / L-T-P:	4/3-2-0	SEE Duration:	180 Minutes
Total Contact Hours:	50	SEE Marks:	60 Marks
CIA Marks:	40	Assignment	1 / Module

and the second	SKIT		Teaching	Process	Re	ev No.: 1.0
	Doc Coo	de: BS-S	SKIT.Ph5b1.F02		Da	ate: 28-01-2020
	Title:	Engi	ineering Chemistry		Pa	age: 2/ 19
Copyright ©2017. cA	AS. All rights rese	erved.				
Course Plan Author: Dr.		Dr. Manj	u	Sign;		Dt:28.01.2020
Checked By: Dr		Dr Shan	nkara B S	Sign		Dt:28.01.2020

2. Course Content

Modul e	Module Content	Teaching Hours	Module Concepts	Blooms Level
1	Electrochemistry and Energy storage systems Use of free energy in chemical equilibrium: Thermodynamic functions: Definitions of free energy and entropy. Cell potential, derivation of Nernst equation for single electrode potential, numerical problems on E, E 0, and E cell. Electrochemical Systems: Reference electrodes: Introduction, construction, working and applications of Calomel electrode. Ion-selective electrode - Definition, construction and principle of Glass electrode, and determination of pH using glass electrode. Electrolyte concentration cells, numerical problems.	6hr	Energy storage device	L2 Understanding L3 Applying
2	Energy storage systems: Introduction, classification - primary, secondary and reserve batteries. Construction, working and applications of Ni-MH and Li-ion batteries.	4hr	Batteries	L2 Understanding L3 Applying
3	Corrosion: Introduction, Electrochemical theory of corrosion, Factors affecting the rate of corrosion: ratio of anodic to cathodic areas, nature of metal, nature of corrosion product, nature of medium – pH, conductivity and temperature. Types of corrosion - Differential metal and Differential aeration – pitting and water line). Corrosion control: Anodizing – Anodizing of aluminium, Cathodic protection - sacrificial anode and impressed current methods, Metal coatings - Galvanization.		Corrosion Engg.	L2 Understanding
4	Metal finishing : Introduction, Technological importance. Electroplating: Introduction, principles governing electroplating-Polarization, decomposition potential and over voltage. Electroplating of chromium (hard and decorative). Electro less plating: Introduction, electroless plating of nickel & copper, distinction between electroplating and electroless plating processes	5hr	Metal Coating techniques	L2 Understanding
5	Energy Systems Chemical Fuels: Introduction, classification, definitions of CV, LCV, and HCV, determination of calorific value of solid/liquid fuel using bomb calorimeter, numerical problems. Knocking of petrol engine – Definition, mechanism, ill effects and prevention. Power alcohol, unleaded petrol and biodiesel. Fuel Cells: Introduction, differences between conventional cell and fuel cell, limitations & advantages. Construction, working & applications of methanol-oxygen fuel cell with H 2 SO 4 electrolyte, and solid oxide fuel cell (SOFCs).		Chemical fuels	L2 Understanding
6	Solar Energy : Photovoltaic cells- introduction, construction and working of a typical PV cell. Preparation of solar grade silicon by Union Carbide Process/Method. Advantages & disadvantages of PV cells.		Solar cells	L2 Understanding
7	Environmental Pollution and Water Chemistry Environmental Pollution: Air pollutants: Sources, effects and control of primary air pollutants: Carbon monoxide, Oxides of nitrogen and sulphur, hydrocarbons, Particulate matter, Carbon monoxide, Mercury and Lead. Secondary air pollutant: Ozone, Ozone depletion. Waste Management: Solid waste, e-waste & biomedical waste: Sources, characteristics & disposal methods	5hr	Pollutants in air	L2 Understanding L3 Applying

and the second second	SKIT	Teaching Process	Rev No.: 1.0
	Doc Code:	BS-SKIT.Ph5b1.F02	Date: 28-01-2020
	Title:	Engineering Chemistry	Page: 3/ 19
Com might @2017 at	AC All rights research		

С	opyright	t ©2017.	cAAS.	All	rights	reserv

Copyrig	ht ©2017. cAAS. All rights reserved.			
	(Scientific land filling, composting, recycling and reuse)			
8	Water Chemistry: Introduction, sources and impurities of water; boiler feed water, boiler troubles with disadvantages -scale and sludge formation, boiler corrosion (due to dissolved O 2, CO 2 and MgCl 2). Sources of water pollution, Sewage, Definitions of Biological oxygen demand (BOD) and Chemical Oxygen Demand (COD), determination of COD, numerical problems on COD. Chemical analysis of water: Sulphates (gravimetry) and Fluorides (colorimetry). Sewage treatment: Primary, secondary (activated sludge) and tertiary methods. Softening of water by ion exchange process. Desalination of sea water by reverse osmosis		Water Chemistry	L2 Understanding L3 Applying
9	Instrumental methods of analysis and Nanomaterials Instrumental methods of analysis: Theory, Instrumentation and applications of Colorimetry, FlamePhotometry, Atomic Absorption Spectroscopy, Potentio metry, Conductometry (Strong acid with a strong base, weak acid with a strong base, mixture of strong acid and a weak acid with a strong base).	5hr	Qualitative & Quantitative analysis	L2 Understanding
10	Nanomaterials: Introduction, size dependent properties (Surface area, Electrical, Optical, Catalytic and Thermal properties). Synthesis of nanomaterials: Top down and bottom up approaches, Synthesis by Sol-gel, precipitation and chemical vapour deposition, Nanoscale materials: Fullerenes, Carbon nanotubes and graphenes - properties and applications.		Nano technology	L2 Understanding

3. Course Material

		A 11 1 1
Mod	Details	Available
ule		
	Textbook	
	P.C Jain & Monica jain ."Engineering chemistry" New Delhi(2015-Edition)	In Lib
	S.S Dara A textbook of"Engineering chemistry" ,10 th Edition ,S Chand & Co New Delhi(2014-Edition)	In Lib
3	Engineering chemistry by Basuchandra (2016-Edition)	In dept
4	Engineering chemistry by Basuchandra (2016-Edition)	In dept
	Engineering chemistry by Basuchandra (2016-Edition)	In dept
6	Engineering chemistry by Basuchandra (2016-Edition)	In dept
В	Reference books	
1	"Engineering chemistry" by O.G Palanna, Tata McRraw Hill Education Pvt Ltd. New Delhi,4th (2015-Edition)	In dept
	"Engineering chemistry" by R.V Gadag & A.Nithyanada shetty.,New Delhi(2015- Edition)	ln dept
3	"Engineering chemistry" by B.Jaipraksh, R. Venugopal, sivakumaraiah & Pushpa iyengar,(2015-Edition)	In dept
С	Concept Videos or Simulation for Understanding	
C1	Electrochemical Systems	
	https://www.frontiersin.org > journals > sections	
	https://www.youtube.com > watch	
	https://www.google.com/url	
	https://www.comsol.com > video > simulating-co	
C2	Energy storage systems:	
	https://www.mathworks.com > videos > battery	
	https://sam.nrel.gov > battery-storage	
	https://www.youtube.com	
	https://www.youtube.com	
	https://www.youtube.com	

ANTINITY OF	SKIT	Teaching Process	Rev No.: 1.0
2	Doc Code:	BS-SKIT.Ph5b1.F02	Date: 28-01-2020
	Title:	Engineering Chemistry	Page: 4/ 19
	7. cAAS. All rights reserved.		· · · · · · · · · · · · · · · · · · ·
		<u>vww.comsol.com > video ></u>	
		://www.youtube.com >	
	<u>os://www.youtube</u>		
	<u>os://www.youtube</u>		
	<u>os://www.youtube</u>		
<u>htt</u>	<u>ps://www.youtube</u>		
	tal finishing		
	os://www.youtu		
	os://www.youtu		
	os://www.youtu		
<u>htt</u>	os://www.youtu		
	os: <mark>//</mark> www.youtu		
htt	os://www.youtu	<u>be.com ></u>	

4. Course Prerequisites

Course	Course Name	Module / Topic / Description	Sem	Remarks	Blooms
					Level
8CHE22	Engg Chemistry		2		L2
					underst
				previous standards	anding
		-			
		-			
8CHE22	Engg Chemistry	2, correstori	2		L2
		•			underst
				previous standards	anding
8CHE22	EnggChemistry		_		
					underst
				previous standards	anding
8CHE22	EnggChemistry		_		L2
		-		-	underst
				previous standards	anding
8CHE22	Engg Chemistry				
				-	underst
				previous standards	anding
		nano size.			
1	Code 8CHE22 8CHE22 8CHE22 8CHE22	Code 8CHE22 Engg Chemistry 8CHE22 Engg Chemistry	Code8CHE22Engg Chemistry1/Electrodes&batteries/in order to understand the entire module student should have the knowledge of Galvanic cells,red-ox reactions & thermodynamic functions.8CHE22Engg Chemistry2/corrosion metalfinishing/student should have the basic of electrolytic cells, redox reactions .8CHE22Engg Chemistry3/Chemical cells/student should have the basic of electrolytic cells, redox reactions .8CHE22Engg Chemistry3/Chemical cells/student should have the basic 	Code8CHE22Engg Chemistry1/Electrodes&batteries/in order to understand the entire module student should have the knowledge of Galvanic cells,red-ox reactions & thermodynamic functions.28CHE22Engg Chemistry2/corrosion metalfinishing/student should have the basic of electrolytic cells, redox reactions .28CHE22Engg Chemistry3/Chemical cells/student should have the basic of calorific value,photoelectric effect ect28CHE22Engg Chemistry4/air pollutions & water & basic parameters of water.28CHE22Engg Chemistry5/instrumental methods of analysis & and Nano material/student should have prime knowledge of analysis&2	CodeCodeStudent should have the student should have the knowledge of Galvanic cells, red-ox reactions & thermodynamic functions.Student should have the knowledge of Galvanic cells, red-ox reactions & thermodynamic functions.Students have learn t these topics in their previous standards8CHE22Engg Chemistry 2/corrosion & the basic of electrolytic cells, redox reactions .2Students have learn t these topics in their previous standards8CHE22Engg Chemistry 3/Chemical fuels & solar cells/student should have the basic of calorific value, photoelectric effect ect2Students have learn t these topics in their previous standards8CHE22Engg Chemistry 4/air pollutions & water chemistry/student should know about pollutions , impurities in water t basic parameters of water.2Students have learn t these topics in their previous standards8CHE22Engg Chemistry 5/instrumental methods of analysis and Nano material/student should have the prime knowledge of analysis and and standards2Students have learn t these topics in their previous standards

Note: If prerequisites are not taught earlier, GAP in curriculum needs to be addressed. Include in Remarks and implement in B.5.

B. OBE PARAMETERS

1. Course Outcomes

#	COs	Teach	Concept	Instr	Assessmen	Blooms '
		Hours		Method	t Method	Level
1	To have knowledge of inter	10	Electrochemi	Chalk &	Assignment	L2
	conversion of energy,electro		stry	Talk	& slip test	Understand
	chemistry in energy storage					
	systems					
2	To have knowledge Causes & effects	10	Corrosion &	Chalk &	Assignment	L2
	of corrosion of metals and control of		metal	Talk	& slip test	Understand
	corrosion .modification of surface		finishing			

A STREET	SKIT	Teaching Process	Rev No.: 1.0
	Doc Code:	BS-SKIT.Ph5b1.F02	Date: 28-01-2020
	Title:	Engineering Chemistry	Page: 5/ 19
C	AC All states as a survey		

Copyright ©2017. c4	AAS. All rights reserved.		T.			
	properties of metals by metal					
	finishing technique.					
	To have knowledge Production and consumption of energy by chemical fuels,utilization of solar energy	10	Energy systems	Chalk & Talk	Assignment & slip test	L2 Understand
	To have knowledge of causes,effects and control of pollutants in air and water,waste management.	10	Environment al pollution & water chemistry		Assignment & slip test	L2 Understand
5	To have knowledge of Different techniques of instrumental method of analysis ,fundamentals and synthesis of nano materials.	10	Intrumental method of analysis & nanomaterial s	Chalk & Talk	Assignment & slip test	L2 Understand
-	Total	50	-	-	-	-

Note: Identify a max of 2 Concepts per Module. Write 1 CO per concept.

2. Course Applications

SNo	Application Area	CO	Level
1	lon selective electrodes are used in analysis of samples.	C01	L2
	Batteries are used in electronic devices,computers,medical devices. areo space applications etc	CO2	L2
3	corrosion control methods like phosphating is used as standard pre treatment of automobiles before painting.	CO3	L2
4	Corrosion effects are used in materials science to check the stability of materials.	CO4	L2
5	Anti knocking agents are used in reducing knocking in an IC engines.	CO5	L3
6	Photovoltaic cells are used in telecommunication equipments, solar home appliance .	CO6	L2
7	COD & BOD parameter is used to check suitability of water in environmental studies.	C07	L2
8	Reverse osmosis method is used to soften water.	C08	L3
9	Qualitative Analysis of chemical components	CO9	L3
10	Nano materials are applied in various areas	CO10	L3

Note: Write 1 or 2 applications per CO.

3. Articulation Matrix

(CO – PO MAPPING)

-	Course Outcomes								tcom					
#	COs	P01	PO2	PO3	P04	PO5	P06	P07	PO8	P09	PO10	P011	PO12	Leve
1	To have the knowledge of													
	electro chemistry,													
	electrodes and	3	1	1	-	-	-	-	-	-	-	-	-	L3
	measurement of electrode													
	potential.													
2	To have knowledge of inter													
	conversion of energy,	2	1	1	-	-	-	-	-	-	-	-	-	L2
	energy storage systems													
3	To have knowledge Causes													
	& effects of corrosion of	2	1	1	-	-	-	1	-	-	-	-	-	L2
	metals and control of													
	corrosion													
4	To have knowledge modification	2	1	1	-	-	-	-	-	-	-	-	-	L2

22	SKIT Doc Code:	BS-SKIT.Ph5b1.F02			<u>'' ''</u>	roce						ev No. ate: 28	8-01-2	2020	
	Title:	Engineering Chemis	trv									age: 6			
opyright ©2017. cA	AS. All rights reserved.			r				r		r				I	
	of surface pro	operties of metals													
		hing technique.													
5	To have	knowledge of	2	1	1	-	-	-	-	-	-	-	-	-	L2
		nd consumption of													
,	•	ing chemical fuels	•	4											
6	solar energy	wledge utilization of	2	1	1	-	-	-	-	-	-	-	-	-	L2
7	To have know	vledge of	2	1	1	-	-	-	1	-	-	-	-	-	L3
	causes, effect	s and control													
	of pollutants	in air and													
	water,waste i	management.													
8	To have know	wledge of	2	1	1	-	-	-	1	-	-	-	-	-	L2
	analysis and	purification													
	water treatm														
9	To have know	vledge of Different	2	1	1	-	-	-	-	-	-	-	-	-	L2
	techniques	of instrumental													
	method of an	alysis													
10	To have	knowledge of	2	1	1	-	-	-	-	-	-	-	-	-	L2
	fundamental	s and synthesis of													
	nano materia	als.													
18CHE22.	Average		2.2	Ι	Ι	-	-	-	Ι	-	-	-	-	-	L2

4. Mapping Justification

Мар	ping	Justification	Mapping Level
со	PO	-	
CO1	PO1	Apply the knowledge of anode and cathode to understand the electrochemical cells	l2
	PO2	Formulate nernst equation and solve the problems	L3
	PO3	Design the electrochemical cell by system of electrode components	L2
CO2	PO1	Apply the knowledge of galvanic cells to understated the concept of batteries	L2
	PO2	Identify the different types of batteries	L2
	PO3	Design the various batteries the processes that specified needs with appropriate for the public acceptance	L2
CO3	PO1	Apply the knowledge of redox reaction to understated corrosion processes	L2
	PO2	Analyze the problems due to corrosion of metals and alloys	L2
	PO3	Corrosion control processes that consideration for the safety of metals	L2
	PO7	Corrosion control impact of the professional engineering solution in societal and environmental sustainability.	
CO4	PO1	To apply the engineering knowledge of coating technique of metal structures	L2
	PO2	Identify the metal coatings techniques	L2
	PO3	Processes of electroplating and electro less plating needs appropriate consideration for the safety of metals	L2
CO5	PO1	Apply the basic knowledge of renewable and non renewable energy sources to understand the production of energy	L2
	PO2	Formulate calorific value of solid fuel using bomb calorimeter and solve the problems	L2 &L3
	PO3	Design the IC engine to control the knocking properties of petrol	

A STATE OF
224

and the second	SKIT	Teaching Process	Rev No.: 1.0
	Doc Code:	BS-SKIT.Ph5b1.F02	Date: 28-01-2020
	Title:	Engineering Chemistry	Page: 7/ 19
Copyright ©2017. cA	AS. All rights reserved.		<u> </u>

		engine	
CO6	PO1	Apply the knowledge of renewable energy sources of making of solar cell	L2
	PO2	Using mathematical equation to calculate calorific values	L3
	PO3	Design and development of solar cell that processes meet the specified needs with appropriate environmental considerations.	L2
C07	PO1	Apply the knowledge of air pollutants to discus cause and control of pollutants air	L2
	PO2	Identify cause and control of primary and secondary air pollutants	L2
	PO7	Understand the impact of cause of air pollutant in society and environmental contexts	L2
CO8	PO1	Understand and analyze important parameter of water through analysis	L2
	PO2	Identify different parameters of water through analysis and solve the problems	L2 & L3
	PO3	The processes softening of water by ion exchange and desalination of sea water by reverse osmosis.	L2
	PO7	Understand the impact of cause of water pollutant in society and environmental contexts and demonstrate the knowledge of environmental sustainability of water.	L2
CO9	PO1	Apply the knowledge of science and mathematics to analyze sample qualitatively	L2
	PO2	Formulate the equation of some experimental methods of analysis	L2
	PO3	Design solution for complex engineering problem solve through Instrumental methods of analysis	L2
CO10	PO1	Apply the basic knowledge of size of the particles for synthesis and properties of nano materials	L2
	PO2	Analyze the application of nano materials from various field	L2
	PO3	Design and development of nano materials through various tech	L2

Note: Write justification for each CO-PO mapping.

5. Curricular Gap and Content

SNo	Gap Topic	Actions Planned	Schedule Planned	Resources Person	PO Mapping
1					
2					
3					
4					
5					

Note: Write Gap topics from A.4 and add others also.

6. Content Beyond Syllabus

SNo	Gap Topic	Actions Planned	Schedule Planned	Resources Person	PO Mapping
1					
2					
3					
4					
5					
6					
7					
8					

Statute Ser.
PAR

Copyright ©2017. cAAS. All rights reserved.

9	SZOTT, CAAS, Altrights reserved.		
10			

Note: Anything not covered above is included here.

COURSE ASSESSMENT

1. Course Coverage

Mod	Title	Teaching		No. of	f quest	ion in	Exam		CO	Levels
ule		Hours	CIA-1	CIA-2	CIA-3	Asg	Extra	SEE		
#							Asg			
1	Electrochemistry and Energy	10	2	-	-	1	1	2	CO1,	L1, L2&
	storage systems								CO2	L3
2	Corrosion Science and Metal	10	2	-	-	1	1	2	CO3,	L1, L2
	finishing								CO4	
3	Energy Systems	10	-	2	-	1	1	2	CO5,	L1, L2&
									CO6	L3
4	Environmental pollution and water	10	-	2	-	1	1	2	C07,	L1, L2
	Chemistry								CO8	& L3
5	Instrumental Methods of Analysis &	10	-	-	4	1	1	2	CO9,	L1, L2
	Nanomaterials								CO10	
-	Total	50	4	4	4	5	5	10	-	-

Note: Distinct assignment for each student. 1 Assignment per chapter per student. 1 seminar per test per student.

2. Continuous Internal Assessment (CIA)

Evaluation	Weightage in Marks	СО	Levels
CIA Exam - 1	30	C01, C02, C03, C04	L1,L2, l3
CIA Exam - 2	30	C05, C06, C07, C08	L1,L2, l3
CIA Exam - 3	30	CO9, CO10	L1,L2
			L1,L2, l3,
Assignment - 1	10	CO1, CO2,	L1,L2, l3
Assignment - 2	10	CO3, CO4	L1,L2, l3
Assignment - 3	10	CO5, CO6	L1,L2, l3
Assignment - 4	10	C07, C08	L1,L2, l3
Assignment - 5	10	C09, C010	L1,L2, l3
Seminar - 1			
Seminar - 2			
Seminar - 3			
Other Activities - define - Slip test			
Final CIA Marks	40	-	-

Note : Blooms Level in last column shall match with A.2 above.

D1. TEACHING PLAN - 1

Title:	Electro chemistry and Energy storage systems	Appr Time:	13 Hrs
а	Course Outcomes	-	Blooms
-	The student should be able to:	-	Level

and the second	SKIT	Teaching Process	Rev No	.: 1.0
(Pe AL		SKIT.Ph5b1.F02		8-01-2020
	/	ineering Chemistry	Page: 9	
	7. cAAS. All rights reserved.			
1		emical energy systems through Redox reactions		L2
2	Explain construction	, working & Applications of Batteries		L3
b	Course Schedule			
	Module Content Co	wered	COI	- Level
1		y in chemical equilibria: Thermodynamic functions:	COI	L1, L2
1		nergy and entropy. Cell potential, derivation of Nernst		LI, LZ
2	Numerical on E, E 0			L3
3			L2	
5		Systems: Reference electrodes: Introduction, g and applications of Calomel electrode.		
4	Ion-selective elect electrode and deter		L2	
5		ation cells, numerical problems.		L2, L3
6		ems: Introduction, classification - primary, secondary		L1
7		ig and applications of Ni-MH		L2
8		and applications of Li-ion batteries.		L2
	.			
C	Application Areas	COI	Level	
1 2		is used in medical electronics to analyze samples		L3
Z	etc	electronic devices, computer devices, auto mobiles		L4
d	Review Questions			-
1	Define Free energy,	enthalpy and entropy.		L1
2		ion for single electrode potential.		L2
3	What is Reference e			L1
4		& working of calomel electrode with its application.		L2
5	Define Ion Selective			L1
6		n & principles of glass electrode		L2
8		on of pH of unknown solution using glass electrode.		L2
9	What is electrolyte o			L1
10	•	tion, working & EMF determination of electrolyte		L1
44	concentration cells.			14
11	What is batteries? examples	Explain the Classification batteries with suitable		L1
12		ction, working & Application of Ni-MH battery		L2
12		a law of thermodynamics.		LZ L2
14		andard electrode potential		L2 L2
14	•	ages of Lithium batteries.		L2 L2
15		, working & Application for Li-ion battery.		L2 L2
e	Experiences		-	-
1				
2				
3				
4				
5				

Title:	Corrosion and Metal finishing	Appr	10 Hrs
		Time:	
a	Course Outcomes	-	Blooms
			Level
	The student should be able to:	-	Level

A STATE OF A	SKIT	Teaching Process	Rev No.:	
(63)		BS-SKIT.Ph5b1.F02		-01-2020
Copyright ©201	Title: 7. cAAS. All rights reserved.	Engineering Chemistry	Page: 10	/ 19
1	Describe Electro	ochemical energy systems through Redox reactions		L2
2		tion, working & Applications of Batteries		L2
			-	Level
b	Course Schedu		-	-
Class No	Module Conten		CO2	Level
1		Subject, course objectives and outcomes		L2
2	Corrosion: Introc	luction, Electrochemical theory of corrosion,		L2
3	Factors affectir nature of metal,		L2	
4	nature of mediu - Differential me	m – pH, conductivity and temperature. Types of corrosion etal and		L2
5		tion – pitting and water line). Corrosion control: Anodizing – minium, Cathodic protection -sacrificial anode and nt methods,		L2
6		ol: Anodizing, Metal coatings – Galvanization.		L2
7	-	ntroduction, Technological importance.		L2
8		ntroduction, principles		L2
9	decomposition (roplating-Polarization, potential and over voltage. Electroplating of		L2
10		and decorative).		1.2
10		ting: Introduction, electroless plating of nickel & copper,		L2
	distinction betw	een electroplating and electroless plating processes		
с	Application Are	25	CO2	Level
<u> </u>		on buried in soil by connecting with Zn metal (oil pipe lines,	002	Lavel L3
•		and Gas pipelines).		23
2		ng of copper is used in making PCB'S in electronics.		L4
d	Review Question	ons	-	-
1	Explain electro	chemical theory of corrosion by taking Fe as an example		L2
2	How does the fo	llowing factors affect the rate of corrosion ratio of		L2
	cathodic ares to	anodic area,pH,conductivity & temperature.		
3		c protection? Explain sacrificial anodic method &		L2
		ent/Voltage method		
4		ng? Explain the anodizing of Al.		L1 & L2
5		differential metal corrosion.		L2
6		e corrosion & pitting corrosion.		L2
7		tial aeration corrosion. Explain with example.		L2
8	Explain Galvaniz			L2
9		t & bolt should be made up of same metal		L2
10		o moving in water corrodes below water level.		L2
11		nishing? Give the technological importance of metal		L1& L2
12	finishing. Discuss polariza	tion and over voltage which govern the electronisting		L2
12		tion and over voltage which govern the electroplating. troplating of Chromium.		LZ L2
13		ctroplating of Ni using Watts bath.		LZ L2
14		essplating? Differentiate between electroplating &		L2 L2
IJ	electrolessplatin			LL
16		essplating of Copper.		L2
17	Explain electrole	essplating of Copper in PCBs and their applications.		L2
18	Explain the follo	wing factors affect the rate of corrosion:		L2
	Ratio of cathod	ic ares to anodic area, nature of the corrosion product,		

A STREET, ST	SKIT	Teaching Process	Rev No.:	1.0
	Doc Code: BS-SKIT.Ph5b1.F02		Date: 28-01-20	
A CONTRACTOR	Title:	Engineering Chemistry	Page: 11	/ 1 9
Copyright ©201	7. cAAS. All rights reserved.		1	11
	Nature of the m	etals		
е	Experiences		-	-
1	•			
2				
3				
4				
5				

D2. TEACHING PLAN - 2

Title:	Energy systems & photo voltaic cell	Appr Time:	10 Hrs
a	Course Outcomes	-	Blooms
-	The student should be able to:	-	Level
1	Understand production & consumption of energy using energy systems		L2
2	Describe purpose of renewable energy in making solar cells		L2
b	Course Schedule		
Class No	Module Content Covered	CO3	Level
1	Energy System:Chemical Fuels: Introduction, classification, definitions of CV, LCV, and HCV,	CO3	L2
2			L2
3	Numerical problems on calorific value.		L2
4	Knocking of petrol engine - Definition, mechanism, ill effects and prevention.		L2
5	Power alcohol, unleaded petrol and biodiesel.		L2
6	Fuel Cells: Introduction, differences between conventional cell &fuel cell imitations & advantages.		L2
7	Construction, working & applications of methanol-oxygen fuel cell with H 2 SO 4 electrolyte,		L2
8	Construction, working & applications of solid oxide fuel cell (SOFCs).		L2
9	Solar Energy : Photo voltaic cells- introduction, construction and working of a typical PV cell.		L2
10	Preparation of solar grade silicon by Union Carbide Process/Method. Advantages & disadvantages of PV cells.		L2
С	Application Areas	CO3	Level
1	Anti knocking agents like tetraethyl lead are used in IC engines to reduce knocking.		L2
2	Photovoltaic cells are used in telecommunication equipments, solar home appliance etc.		L2
d	Review Questions		L2
1	What are chemical fuels?		
2	Define Calorific Value? Describe determination of Calorific value of solid fuel using bomb Calorimeter.		
3	What is Knocking? Explain mechanism of petrol Knocking		
4	Write note on biodiesel, power alcohol & unleaded petrol.		
5	What are PV Cells? Give the importance of PV Cells.		L2
6	Explain the construction and working of PV Cells		
7	Explain the utilization of PV Cells		

A STATE OF A	SKIT	Teaching Process	Rev No.:	1.0
	Doc Code:	BS-SKIT.Ph5b1.F02	Date: 28	-01-2020
	Title:	Engineering Chemistry	Page: 12	/ 19
	cAAS. All rights reserved			
8	Explain the pro	oduction of Solar grade silicon by union carbide process.		
е	Experiences		-	-
1				
2				
3				
4				
5				

Title:	Air pollution and Water chemistry	Appr Time:	16 Hrs
a	Course Outcomes	-	Blooms
-	The student should be able to:	-	Level
1	Understand important parameters of water through analysis.		L2
2	Conclude experimental method to analyze sample qualitatively.		L2
b	Course Schedule		
	Module Content Covered	CO4	Level
1	Environmental Pollution: Air pollutants: Sources, effects and control of	004	Level L2
•	primary air pollutants: Carbon monoxide, Oxides of nitrogen		
2	sulphur, hydrocarbons, Particulate matter, Carbon monoxide,		L2
3	Mercury and Lead. Secondary air pollutant: Ozone, Ozone depletion.		L2
4	Waste Management: Solid waste, e-waste & biomedical waste:Sources,		L2 L2
	characteristics & disposal methods (Scientific land filling, composting,		
	recycling and reuse)		
5	Water Chemistry: Introduction, sources and impurities of water		L2
6	boiler feed water, boiler troubles with disadvantages -scale and sludge		L2
	formation, boiler corrosion (due to dissolved 0 2 , CO 2 and MgCl 2).		
7	Sources of water pollution, Sewage, Definitions of Biological oxygen		L2
	demand (BOD) and Chemical Oxygen Demand (COD),		
8	determination of COD, numerical problems on COD. Chemical analysis of		L2
	water: Sulphates (gravimetry) and Fluorides (colorimetry).		
9	Sewage treatment: Primary, secondary (activated sludge). tertiary methods.		L2
10	Softening of water by ion exchange process.		L2
	Desalination of sea water by reverse osmosis	604	
c	Application Areas	CO4	Level
I	COD & BOD parameter is used to check suitability of water in environmental studies.		LS
2	Reverse osmosis method is used to soften water.		L4
d	Review Questions		-
1	Describe effects & control of any two primary air pollutants.		L1
2	Discuss effects & control of any secondary air pollutants.		L3
3	Explain characteristic & disposal methods of e-waste & biomedical waste.		L2
4	Write a note on sources of air pollutants.		L4
5	What is boiler feed water? Explain boiler troubles & disadvantages of		L2
	scale and sludge formation,		
6	Discuss boiler corrosion due to dissolved O 2, CO 2 and MgCl 2		L5
7	What is COD?Explain determination of COD.		L2
8	Explain activated sludge method of sewage treatment.		L3
9	Write a note on primary & tertiary treatment of sweage.		L4
10	Explain how Softening of water can be done by ion exchange process.		L1
	What is desalination of sea water? explian reverse osmosis method.		L4
11	······································		

A STATE OF A	SKIT	Teaching Process	Rev No.: 1.0
	Doc Code:	BS-SKIT.Ph5b1.F02	Date: 28-01-2020
	Title:	Engineering Chemistry	Page: 13 / 19
Copyright ©2017. c	AAS. All rights reserved.		
1			L2
2			
3			
4			L3
5			

D3. TEACHING PLAN - 3

Title:	Instrumental methods of analysis and Nanomaterials	Appr Time:	16 Hrs
a	Course Outcomes	-	Blooms
-	The student should be able to:	-	Level
1	Conclude experimental methods to analize the sample Qualitatively		L2
2	Describe the synthesis, properties and applications of Nanomaterial		L2
b	Course Schedule		
lass No	Module Content Covered	CO5	Level
1	Instrumental methods of analysis: Theory, Instrumentation and applications of Colorimetry & Flame Photometry,		L2
2	Theory, Instrumentation and applications of Atomic Absorption Spectroscopy & Potentiometry.		L2
3	Theory, Instrumentation and applications of Conductometry (Strong acid with a strong base, weak acid with a strong base, mixture of strong acid and a weak acid with a strong base).		L2
4	Nanomaterials: Introduction, size dependent properties (Surface area, Electrical, Optical, Catalytic and Thermal properties).		L2
5	Synthesis of nanomaterials: Top down and bottom up approaches,		L2
6	Synthesis of nanomaterials Synthesis by Sol-gel,		L2
7	Synthesis of nanomaterialsprecipitation and chemical vapour deposition,		L2
8	Nanoscale materials: Fullerenes, Carbon nanotubes and graphenes - properties and applications.		L2
С	Application Areas	CO5	Level
c 1	Measurement of optical density is used for analysis of unknown samples	CO5	Level L3
c 1 2		CO5	
1	Measurement of optical density is used for analysis of unknown samples in medical electronics. Fullerenes are used in super conductors,micro electronic device,non	CO5	L3
1 2	Measurement of optical density is used for analysis of unknown samples in medical electronics. Fullerenes are used in super conductors,micro electronic device,non linear optic devices etc.	CO5	L3
1 2 3	Measurement of optical density is used for analysis of unknown samples in medical electronics. Fullerenes are used in super conductors,micro electronic device,non linear optic devices etc. CNT'S are used in nano-electronics ,optics, analyte sensing electrodes etc Review Questions	CO5	L3
1 2 3 d	Measurement of optical density is used for analysis of unknown samples in medical electronics. Fullerenes are used in super conductors,micro electronic device,non linear optic devices etc. CNT'S are used in nano-electronics,optics,analyte sensing electrodes etc	C05	L3 L4
1 2 3 d 1	Measurement of optical density is used for analysis of unknown samples in medical electronics. Fullerenes are used in super conductors,micro electronic device,non linear optic devices etc. CNT'S are used in nano-electronics ,optics,analyte sensing electrodes etc Review Questions Explian Theory, Instrumentation and applications of Colorimetry.	C05	L3 L4 - L2
1 2 3 d 1 2	Measurement of optical density is used for analysis of unknown samples in medical electronics. Fullerenes are used in super conductors,micro electronic device,non linear optic devices etc. CNT'S are used in nano-electronics ,optics, analyte sensing electrodes etc Review Questions Explian Theory, Instrumentation and applications of Colorimetry. Explian Theory, Instrumentation and applications of Flame Photometry. Discuss how condutometers are used for analysis of samples. Describe Theory, Instrumentation and applications of Atomic Absorption	CO5	L3 L4 - L2 L2
1 2 3 d 1 2 3	Measurement of optical density is used for analysis of unknown samples in medical electronics. Fullerenes are used in super conductors,micro electronic device,non linear optic devices etc. CNT'S are used in nano-electronics ,optics, analyte sensing electrodes etc Review Questions Explian Theory, Instrumentation and applications of Colorimetry. Explian Theory, Instrumentation and applications of Flame Photometry. Discuss how condutometers are used for analysis of samples.	C05	L3 L4 - L2 L2 L2 L2
1 2 3 d 1 2 3 4	Measurement of optical density is used for analysis of unknown samples in medical electronics. Fullerenes are used in super conductors,micro electronic device,non linear optic devices etc. CNT'S are used in nano-electronics ,optics, analyte sensing electrodes etc Review Questions Explian Theory, Instrumentation and applications of Colorimetry. Explian Theory, Instrumentation and applications of Flame Photometry. Discuss how condutometers are used for analysis of samples. Describe Theory, Instrumentation and applications of Atomic Absorption Spectroscopy.& Potentiometry.	CO5	L3 L4 - L2 L2 L2 L2 L2 L2
1 2 3 d 1 2 3 4 5	Measurement of optical density is used for analysis of unknown samples in medical electronics. Fullerenes are used in super conductors,micro electronic device,non linear optic devices etc. CNT'S are used in nano-electronics ,optics,analyte sensing electrodes etc Review Questions Explian Theory, Instrumentation and applications of Colorimetry. Explian Theory, Instrumentation and applications of Flame Photometry. Discuss how condutometers are used for analysis of samples. Describe Theory, Instrumentation and applications of Atomic Absorption Spectroscopy.& Potentiometry. Describe Theory, Instrumentation and applications of Potentiometry. What are nano materials? Explain the synthesis of nano material by solgel	CO5	L3 L4 - L2 L2 L2 L2 L2 L2 L2 L2
1 2 3 d 1 2 3 4 5 6	Measurement of optical density is used for analysis of unknown samples in medical electronics. Fullerenes are used in super conductors,micro electronic device,non linear optic devices etc. CNT'S are used in nano-electronics ,optics, analyte sensing electrodes etc Review Questions Explian Theory, Instrumentation and applications of Colorimetry. Explian Theory, Instrumentation and applications of Flame Photometry. Discuss how condutometers are used for analysis of samples. Describe Theory, Instrumentation and applications of Atomic Absorption Spectroscopy.& Potentiometry. Describe Theory, Instrumentation and applications of Potentiometry. What are nano materials? Explain the synthesis of nano material by solgel & precipitation methods		L3 L4 L2 L2 L2 L2 L2 L2 L2 L2 L2 L2 L2
1 2 3 d 1 2 3 4 5 6 7	Measurement of optical density is used for analysis of unknown samples in medical electronics. Fullerenes are used in super conductors,micro electronic device,non linear optic devices etc. CNT'S are used in nano-electronics ,optics,analyte sensing electrodes etc Review Questions Explian Theory, Instrumentation and applications of Colorimetry. Explian Theory, Instrumentation and applications of Flame Photometry. Discuss how condutometers are used for analysis of samples. Describe Theory, Instrumentation and applications of Atomic Absorption Spectroscopy.& Potentiometry. Describe Theory, Instrumentation and applications of Potentiometry. What are nano materials? Explain the synthesis of nano material by solgel		L3 L4 - L2 L2 L2 L2 L2 L2 L2 L2 L2 L2 L2 L2 L2
1 2 3 d 1 2 3 4 5 6 7 8	Measurement of optical density is used for analysis of unknown samples in medical electronics. Fullerenes are used in super conductors,micro_electronic_device,non linear optic devices etc. CNT'S are used in nano-electronics ,optics, analyte sensing electrodes etc Review Questions Explian Theory, Instrumentation and applications of Colorimetry. Explian Theory, Instrumentation and applications of Flame Photometry. Discuss how condutometers are used for analysis of samples. Describe Theory, Instrumentation and applications of Atomic Absorption Spectroscopy.& Potentiometry. Describe Theory, Instrumentation and applications of Potentiometry. What are nano materials? Explain the synthesis of nano material by solgel & precipitation methods Explain synthesis of nano materials by chemical vapour condensation method		L3 L4 - L2 L2 L2 L2 L2 L2 L2 L2 L2 L2 L2 L2 L2
1 2 3 d 1 2 3 4 5 6 7 8 9 9	Measurement of optical density is used for analysis of unknown samples in medical electronics. Fullerenes are used in super conductors,micro_electronic_device,non linear optic devices etc. CNT'S are used in nano-electronics ,optics,analyte sensing electrodes etc Review Questions Explian Theory, Instrumentation and applications of Colorimetry. Explian Theory, Instrumentation and applications of Flame Photometry. Discuss how condutometers are used for analysis of samples. Describe Theory, Instrumentation and applications of Atomic Absorption Spectroscopy.& Potentiometry. Describe Theory, Instrumentation and applications of Potentiometry. What are nano materials? Explain the synthesis of nano material by solgel & precipitation methods Explain the size dependent properties of Nanomaterials Explain synthesis of nano materials by chemical vapour condensation method Explain the properties and application of Fullerences.		L3 L4 L2 L2 L2 L2 L2 L2 L2 L2 L2 L2 L2 L2 L2
1 2 3 d 1 2 3 4 5 6 7 8 9	Measurement of optical density is used for analysis of unknown samples in medical electronics. Fullerenes are used in super conductors,micro_electronic_device,non linear optic devices etc. CNT'S are used in nano-electronics ,optics, analyte sensing electrodes etc Review Questions Explian Theory, Instrumentation and applications of Colorimetry. Explian Theory, Instrumentation and applications of Flame Photometry. Discuss how condutometers are used for analysis of samples. Describe Theory, Instrumentation and applications of Atomic Absorption Spectroscopy.& Potentiometry. Describe Theory, Instrumentation and applications of Potentiometry. What are nano materials? Explain the synthesis of nano material by solgel & precipitation methods Explain synthesis of nano materials by chemical vapour condensation method		L3 L4 - L2 L2 L2 L2 L2 L2 L2 L2 L2 L2 L2 L2 L2

A STATUTE OF	SKIT	Teaching Process	Rev No.:	1.0	
	Doc Code:	BS-SKIT.Ph5b1.F02		-01-2020	
	Title:	Engineering Chemistry	Page: 14	/ 19	
Copyright ©2017.	AAS. All rights reserved.				
1					L2
2					
3					
4					L3
5					

E1. CIA EXAM - 1

a. Model Question Paper - 1

Crs (Code	18CHE22	Sem:	2	Marks:	30	Time:	75 minute	es	
Coui	rse:	Engineeri	ng Chemi	stry			·			
-	-				ach carry equ			Marks	СО	Level
1	a	Derive Nernst equation for single electrode potential.							co1	L2
	b	Discuss classification of batteries with example.							co2	L2
	с	What is ref Calomel el		ctrode? Discus		on and wo	rking of Standard	5	co1	L2
					OR					L2
2	а	What is Ion electrode.	selective	electrode? Ex	xplain measure	ment of p	H using Glass	5	co1	L2
	b	measured	0.0592V.Th	ne concentrat	ions of the an	ode is 0.0	on cell of copper wa 001M CuSO4 solutio calculate the value of	on,	co1	L2
	С	Discuss the	construct	ion, working 8	t applications o	f nickel-m	etal hydride battery.	5	co1	L2
										L2
3	а	Define Corrosion? Explain the electrochemical theory of corrosion by taking iron a an example.							CO2	L2
	b	What is fue oxygen fue		uss the constr	uction, working	& applica	tions of methanol-	5	CO2	L2
	С	Explain the I.Polarizatio		terms : composition F	Potential iii	. Over volt	age	5	CO2	L2
					OR					L2
4	а	What is diff corrosion v			ion? Explain wat	erline cor	rosion & pitting	5	CO2	L2
	b	What is Ele	ctroplating	g? Explain Eleo	ctroplating of C	hromium.		5	CO2	L2
	С	What is ele reactions.	ectroless p	lating? Explai	n Electroless p	lating of (Copper with relevar	nt 5	CO2	L2

b. Assignment -1

Note: A distinct assignment to be assigned to each student.

				Model	Assignment	Questio	ns			
Crs C	ode:	18CHE22	Sem:	2	Marks:	10	Time:	90 - 120	minut	tes
Cours	se:	Engineeri	ng Chemistry	/			i			
Note:	Each	student to	answer 2-3	assignment	s. Each assi	gnment o	carries equal ma	irk.		
SNo										
1		[Define Free e	nergy and e	entropy.				CO1	L2
2		[Derive Nernst	equation fo	or single ele	ctrode p	otential.		CO1	L2
3	What is Reference electrode?						CO1	L2		
4		E	Explain consti	ruction & wo	orking of ca	lomel ele	ctrode with its		CO1	L2
		a	pplication.							
5		[Define Ion Sel	ective elect	trode?				CO1	L2
6		C	Describe cons	truction & v	vorking of g	lass elect	trode		CO1	L2
7			xplain deter electrode.	mination of	pH of unkno	own solut	ion using glass		C01	L2
8		١	What is elect	rolyte conce	entration ce	lls.			CO1	L2
9			Explain the co electrolyte co			EMF dete	rmination of		CO1	L2

1	MIL BY	SKIT	Teaching Process	Rev No.: 1.0	
		Doc Code:	BS-SKIT.Ph5b1.F02	Date: 28-01	
		Title:	Engineering Chemistry	Page: 15 / 19	7
Copyright	t ©2017. cA	AS. All rights reserved.	is batteries? Explain the Classification batteries with	C01	L2
10			ble examples	01	LZ
11			ribe the construction, working & Application of Ni-MH	CO1	L2
		batte	, 3 11		
12		Expla	in construction, working & Application for Li-ion battery.	CO1	L2
13			in electrochemical theory of corrosion by taking Fe as an	CO2	L2
		exam			
14			does the following factors affect the rate of corrosion	CO2	L2
			of cathodic ares to anodic area,pH,conductivity &		
			erature.		
15			is cathodic protection? Explain sacrificial anodic method	CO2	L2
16			is Anodizing? Explain the anodizing of AL.	CO2	L2
17			a note on differential metal corrosion.	C02	 L2
17			in waterline corrosion & pitting corrosion.	C02	L2 L2
19			is differential aeration corrosion. Explain with example.	CO2	L2
20			in Galvanization	CO2	L2
21			in why nut & bolt should be made up of same metal	CO2	L2
22			in why ship moving in water corrodes below water level.	CO2	 L2
23			is metal finishing? Give the technological importance of	CO2	L2
			l finishing.		
24		Discu	ss polarization and over voltage which govern the	CO2	L2
		elect	roplating.		
25			ss the electroplating of Chromium.	CO2	L2
26			iss the electroplating of Ni using Watts bath.	CO2	L2
27		What	is electrolessplating? Differentiate between roplating & electrolessplating .	CO2	L2
28			in electrolessplating of Copper.	CO2	L2

E2. CIA EXAM – 2

a. Model Question Paper - 2

Crs C	ode:	18CHE22	Sem:	2	Marks:	30	Time:	75 minute	es.	
Cour	se:									
-	-	Note: Answer any 2 questions, each carry equal marks.						Marks	СО	Level
1	а				e determinatio	n of Calor	ific value of solid	5	CO3	L2
		-	iel using bomb Calorimeter. /hat is Knocking? Explain mechanism of petrol Knocking							
							king	5	CO3	L2
	С	Explain th	e construc	tion and v	working of PV	Cells		5	CO3	L2
									CO3	
2	а	Explain th	e utilizatio	n of PV Ce	ells .			5	CO3	L2
	b	Explain the	e productio	n of Solar	grade silicon l	by union o	carbide process.	5	CO3	L2
						s of meth	nanol-oxygen fuel	5	CO3	L2
		cell with H	1 2 SO 4 el	ectrolyte	,					
		D : (1)							60.4	
3					/ secondary air			5	CO4	L2
	b	Explain ch	aracteristic	& dispos	al methods of e	e-waste &	t biomedical waste	e. 5	CO4	L2
	С	What is CC	D?Explain	determin	ation of COD.			5	CO4	L2
		F undation In au	C = {t = = :=						604	1.2
4		-		-		-	hange process.	5	CO4	L2
					ary treatment o	-		5	C04	L2
	С	Explain cha	aracteristic	& dispos	al methods of e	e-waste &	biomedical waste	5	CO4	L2

and the second s	SKIT	Teaching Process	Rev No.: 1.0
	Doc Code:	BS-SKIT.Ph5b1.F02	Date: 28-01-2020
	Title:	Engineering Chemistry	Page: 16 / 19

Copyright ©2017. cAAS. All rights reserved.

Note: A distinct assignment to be assigned to each student.

				Mode	l Assignmen	t Questions				
Crs C	ode:	18CHE22	2 Sem:	2	Marks:	5 / 10	Time:	90 - 120	minut	es
Cours	se:	Engineer	ring chemistr	у У						
Note:	Each	student t	o answer 2-3	assignmer	nts. Each as	signment ca	rries equal mai	٠k.		
SNo	l	JSN		Assi	gnment De	scription		Marks	СО	Level
1			Describe effe	cts & conti	rol of any tw	o primary ai	r pollutants.	5	CO4	L2
2			Discuss effec	ts & contro	ol of any sec	ondary air p	ollutants.	5	CO4	L2
3			Explain chara biomedical v		disposal me	ethods of e-v	vaste &		CO4	L2
4			Write a note	on sources	of air pollut	tants.		5	CO4	L2
5			What is boile disadvantage				bles &	5	CO4	L2
6			Discuss boile 2	r corrosior	n due to dis	solved O 2,	CO 2 and MgC	il 5	CO4	L2
7			What is COD	Explain de?	eterminatior	n of COD.		5	CO4	L2
8			Explain activa	ated sludge	e method of	f sewage tre	atment.	5	CO4	L2
9			Write a note	on primary	& tertiary tr	eatment of s	weage.	5	CO4	L2
10			Explain how process.	Softening	of water ca	n be done b	y ion exchang	e 5	CO4	L2
11			What is desal method.	ination of s	sea water? e	explian rever	se osmosis	5	CO4	L2

E3. CIA EXAM – 3

a. Model Question Paper - 3

Crs C	Code	18CHE22 Se	em:	2	Marks:	30	Time: 7	5 minute	es	
Cour	se:	Engineering c	hemistry							
-	-	Note: Answe	er any 2 qu	uestions,	each carry	equal ma	urks.	Marks	со	Level
1	а	Explian Theor	y, Instrum	entation a	and application	ons of Co	lorimetry.	5	CO5	L2
	b	Discuss how o	conducto i	neters ar	re used for ar	alysis of s	samples.	5	CO5	L2
	С	Describe The	ory, Instrur	nentatio	n and applica	tions of P	otentiometry.	5	CO5	L2
				o	-				CO5	
2	а	Explian Theor	y, Instrum	entation a	and application	ons of Fla	me Photometry.	5	CO5	L2
	b	Describe The	ory, Instru	mentatio	on and applic	ations of	Atomic Absorptio	n 5	CO5	L2
		Spectroscopy	Ι.							
	С	Explian Theor	y, Instrum	entation	and applicati	ons of cor	nductometer .	5	CO5	L2
3	a	What are nand method.	o materials	s? Explain	the synthesi	s of nano	material by solgel	5	CO5	L2
	b	Explain the size	ze depende	ent prope	erties of Nanc	materials		5	CO5	L2
	С	Explain synth method	esis of na	no mater	ials by chem	ical vapo	ur condensation	5	CO5	L2
				(or				CO5	
4	а	Explain the pr	operties a	nd applic	ation of carb	on Nano	tubes.	5	CO5	L2
	b	Describe the	properties	and app	lication of gr	aphenes.		5	CO5	L2
	С	Explain the sy	nthesis of	nano ma	iterial by prec	ipitation i	method.	5	CO5	L2

b. Assignment - 3

Note: A distinct assignment to be assigned to each student.

					-				
			Model	Assignment	Questions				
Crs Code:	18CHE22	Sem:	2	Marks:	5 / 10	Time:	90 - 120	minut	es
Course:	Engineeri	ng chemistr	У						
Note: Each	student to	answer 2-3	assignment	s. Each assig	nment carr	ies equal mar	k.		
SNo U	JSN		Assig	nment Desci	ription		Marks	СО	Level
L I			-		•				

And the second s	SKIT	Teaching Process	Rev	No.: 1.0	
	Doc Code:	BS-SKIT.Ph5b1.F02	Date	e: 28-01	-2020
	Title:	Engineering Chemistry	Page	e: 17 / 19	9
Copyright ©2017. cA	AS. All rights reserved.				
4	E 11		-	COF	10

Lopyngnt	©2017. CAAS. All rights reserved.			
1	Explian Theory, Instrumentation and applications o Colorimetry.	f 5	CO5	L2
2	Explian Theory, Instrumentation and applications of Flame Photometry.	5	CO5	L2
3	Discuss how condutometers are used for analysis of samples.	5	CO5	L2
4	Describe Theory, Instrumentation and applications of Atomic Absorption Spectroscopy.	5	CO5	L2
5	Describe Theory, Instrumentation and applications o Potentiometry.	f 5	CO5	L2
6	What are nano materials? Explain the synthesis of nano material by solgel & precipitation methods	5	CO5	L2
7	Explain the size dependent properties of Nanomaterials	5	CO5	L2
8	Explain synthesis of nano materials by chemical vapour condensation method	5	CO5	L2
9	Explain the properties and application of Fullerences.	5	CO5	L2
10	Explain the properties and application of carbon Nano tubes.	5	CO5	L2
11	Describe the properties and application of graphenes.	5	CO5	L2

F. EXAM PREPARATION

1. University Model Question Paper

Cou	rse:	Month /	' Year	Feb /2	2019
Crs (Code:	18CHE22 Sem: 2 Marks: 100 Time:		180 m	inutes
-	Note	Answer all FIVE full questions. All questions carry equal marks.	Marks	СО	Level
1	а	Derive Nernst's equation for single electrode potential.	5	CO1	L2
		Define electrolyte concentration cell. Calculate the e.m.f of the given concentration cell at 298K Ag /Ag,NO3(0.02 M) AgNO3 (2 M) / Ag	5	C01	L3
		Describe construction and working of Ni-MH battery. Mention its application.	5	C01	L2
	d	What is batteries? Explain the Classification batteries with suitable examples	5	CO1	L2
		OR			
-		Define reference electrode. Describe construction, working & Application of Calomel electrode	5	C01	L2
		Describe construction and working of Li-ion battery. Mention its application.	5	CO1	L2
	С	Explain determination of pH of unknown solution using glass electrode.	5	CO1	L2
		An electrochemical cell consist of a Nickel electrode dipped in 0.05M NiSO4 & lead electrode dipped in 0.5M PbSO4 solution at 298K. Given that the standard electrode potential of Ni & Pb electrode are -0.24V & -0.13V respectively. Write the cell representation, cell reaction and calculate EMF of the cell.		CO1	L3
			-	600	
2		Explain electrochemical theory of corrosion with its mechanism taking Iron as an example.	5	C02	L2
		Describe the following factors which affects the rate of corrosion: (i) Ratio of Anodic to cathodic area (ii) pH of the medium.	5	C02	L2
	С	Describe electroplating of Chromium. Mention its applications.	5	C02	L2
	d	Define Metal finishing. Describe the technological importance of metal finishing.	5	C02	L2
		OR		C02	
-		Describe electroless plating of copper on PCB's with plating reaction. Mention its application.	5	C02	L2
		Explain polarization & over voltage.	5	C02	L2
		-			

6	and the second	SKIT Teaching Process	Rev N	o.: 1.0		
		Doc Code: BS-SKIT.Ph5b1.F02	Date:	Date: 28-01-2		
		Title: Engineering Chemistry	Page:	Page: 18 / 19		
Copyrig		cAAS. All rights reserved.		602		
	c	What is anodizing? Explain the anodizing of aluminum.	5	C02	L2	
	d	Explain Differential Aeration Corrosion with an example.	5	C02	L2	
3	а	Describe Bomb calorimetric method for determination of calorific value of a solid fuel.	5	CO3	L2	
	b	What is Knocking of petrol engine? Explain the Knocking mechanism and ill effects.	5	CO3	L2	
	С	What is Fuel cell? Give the difference between conventional cell and fuel cell.	5	CO3	L2	
	d	Explain the construction, working and application of methanol-oxygen fuel cell.	5	CO3	L2	
		OR		CO3		
-	a	What is P.V cell? Explain the construction and working of P.V Cell.	5	CO3	L2	
	b	Explain the production of solar grade silicon by Union carbide method.	5	CO3	L2	
	С	0.75g of coal saple (carbon-90%, hydrogen-6% and ash -4%) was subjected to combustion in a bomb calorimeter. Mass of water taken in the calorimeter was 3500g and the water equivalent of calorimeter was 750g. The rise in temperature was found to be 3.2°C. Calculate the gross and net calorific values of a Sample (Specific heat of water=4.187kJ/Kg/°C: Latent heat of stam = 2454kJ/Kg).		CO3	L3	
	d	Explain Followings: (i)Power alcohol (ii)Biodiesel	4	CO3	L2	
4	a	What is boiler feed water? Explain boiler troubles & disadvantages of scale and sludge formation,	5	CO3 CO4	L2	
	b	Describe effects & control of any two primary air pollutants.	5	CO4	L2	
	c	What is COD?Explain determination of COD of west water .	5	C04	L2	
	d	Explain characteristic & disposal methods of e-waste & biomedical waste.	5	C04	L2	
	,	OR		CO4		
-	a	Explain activated sludge method of sewage treatment.	5	CO4	L2	
	b	Explain how Softening of water can be done by ion exchange proc	5	CO4	L2	
	c	What is desalination of sea water? explian reverse osmosis method.	5	C04	L2	
	d	Calculate COD of 25CC of an effluent sample which requires 8.3 cm ³ of 0.001 MK ₂ Cr ₂ O ₇ , for its complete oxidation.	5	CO4	L2 L3	
5	а	Explain the theory, Instrumentation and application of Colorimetry.	5	CO5	L2	
	b	Describe the theory, Instrumentation and application of Flame Photometry		CO5	L2	
	С	Explain synthesis of nano materials by chemical vapour condensation method	5	CO5	L2	
	d	What are nano materials? Explain the synthesis of nano material by solgel Method.	5	CO5	L2	
		OR		CO5		
	а	Describe the theory, Instrumentation and application of Colorimetry.	5	CO5	L2	
	b	What are the application of Conductometry by Strong acid with a strong base, weak acid with a strong base, mixture of strong acid and a weak acid with a strong base.	5	CO5	L2	
	с	Explain the properties and application of Fullerences.	5	CO5	L2	
	d	Explain the properties and application of carbon Nano tubes and graphenes.	5	CO5	L2	

2. SEE Important Questions

Course:		Engineering chemstry					Month	n / Year Feb /20 ⁻		2019
Crs Code:		18CHE22	Sem:	2	Marks	100	Time:		180 mi	inutes
	Note	ote Answer all FIVE full questions. All questions carry equal marks.						-	-	
Module	Qno.	Important Question						Marks	со	Year

		SKIT Teaching Process			Rev No.: 1.0		
		Doc Code:	e: BS-SKIT.Ph5b1.F02			2020	
6		Title: Engineering Chemistry)	
Copyrig 1	<u>sht ©2017. c</u> 1	AAS. All rights reserved. Derive Nernst e	equation for single electrode potential.	20	co1	2019	
	2		ication of batteries with example.		co1	2019	
	3	3 What is reference electrode? Discuss the construction and working of Standard Calomel electrode.				2019	
	4	electrode.	ective electrode? Explain measurement of pH using Glass		co1	2019	
	5	measured 0.05	tration cell? The cell potential of concentration cell of copper was 92V. The concentrations of the anode is 0.001M CuSO ₄ solution, Mention cell representation, cell reaction $\&$ calculate the value		co1	2019	
						2019	
2	1	Explian electro	20	co2	2019		
	2		following factors affect the rate of corrosion ratio of to anodic area,pH,conductivity & temperature.		co2	2019	
	3		odic protection? Explain sacrificial anodic method & rrent/Voltage method		co2	2019	
	4		lectroplating of Ni using Watts bath.		co2	2019	
	5		olessplating? Differentiate between electroplating &		co2	2019	
						2019	
3	1		ic Value? Describe determination of Calorific value of solid mb Calorimeter.	20	co3	2019	
	2		king? Explain mechanism of petrol Knocking		co3	2019	
	3		onstruction and working of PV Cells		co3	2019	
	4		oduction of Solar grade silicon by union carbide process.		co3	2019	
	5		biodiesel, power alcohol & unleaded petrol.		co3	2019	
						2019	
4	1	Discuss effect	ts & control of any secondary air pollutants.	20	co4	2019	
	2		cteristic & disposal methods of e-waste & biomedical waste.		co4	2019	
	3	Explain activa	ted sludge method of sewage treatment.		co4	2019	
	4	Discuss boiler	corrosion due to dissolved 0 2 , CO 2 and MgCl 2		co4	2019	
	5	What is COD?	Explain determination of COD.		co4	2019	
						2019	
5	1	Explian condu	uctometric estimation of strong acid with strong base.	20	co5	2019	
	2		ory, Instrumentation and applications of Atomic Absorption		co5	2019	
	3		ory, Instrumentation and applications of Potentiometry.		co5	2019	
	4	What are nan	o materials? Explain the synthesis of nano material by ipitation methods		co5	2019	
	5		ze dependent properties of Nanomaterials		co5	2019	